ข้ามไปที่เนื้อหาหลัก

การคูณและหาร จำนวนเชิงซ้อน

จำนวนผู้เยี่ยมชมหน้านี้
              
               จำนวนเชิงซ้อนที่สามารถนำมาคูณ หารกันได้ จะอยู่ในรูปแบบเรกเทนกูล่า (Rectangular Form) หรือรูปแบบเชิงขั้ว (Polar Form)  ก็ได้ แต่รูปแบบที่นิยมนำมาคูณ และหารกันได้ง่ายที่สุดเมื่อจำนวนเชิงซ้อนอยู่ในรูปแบบเชิงขั้ว ดังนั้นหากจำนวนเชิงซ้อนอยู่ในรูปแบบอื่น นิยมเปลี่ยนให้อยู่ในรูปแบบเชิงขั้วก่อนนำมาคูณหรือหารกัน
               โดยนำส่วนที่เป็นจำนวนจริงมาคูณหรือหารกันได้เลย สำหรับส่วนที่เป็นจำนวนจินตภาพ คือจำนวนองศา หากคูณกันให้นำจำนวนองศามาบวกกัน หากหารกันให้นำจำนวนองศาของตัวหารมาลบ

ตัวอย่างที่ 1
               วงจรไฟฟ้ากระแสสลับวงจรหนึ่งมีแหล่งจ่าย 120 Ð30°ต่อกับโหลดที่เป็นความต้านทาน ขนาด 60 โอห์ม  จงหาค่ากระแสไฟฟ้าที่ไหลในวงจร
วิธีทำ  
          กระแสที่ไหลในวงจร   I = E / R
จากโจทย์  E = 120 Ð30°
              R = 60 Ð0° W   ( มุมของ R เท่ากับ 0 เสมอ)
แทนค่าในสูตร  
            \      I = 120 Ð30°60 Ð0°
                         = 120 / 60 Ð30°- 0°

                         = 2 Ð30°   ตอบ

ตัวอย่างที่ 2

       จากวงจรด้านล่าง จงคำนวณหาค่าแรงดันที่จ่ายให้วงจร
วิธีทำ  
          แรงดันที่จ่ายให้กับวงจร   E  =  IR
  จากโจทย์  I = 4 Ð36°
              R = 100 Ð0° W   ( มุมของ R เท่ากับ 0 เสมอ)
  แทนค่าในสูตร  
\        E  = 4 Ð36° x 100 Ð0°
                = 4  x 100 Ð36 + 0 °
                   = 400 Ð36°     ตอบ   

ความคิดเห็น